We had a new paper out a month ago in Science, in which we reassess climate tipping points based on the past ~15 years of climate science. We conclude that five climate tipping points could already be possible at current warming levels, four of which becoming likely beyond 1.5°C. You can find a free referral link to the final published version over on my publications page (plus links to the accepted version and preprint), and a blogpost explaining the paper over at climatetippingpoints.info.
Summary figure for the paper, showing the climate tipping elements we identify and what global warming level they might tip at
This paper first started out in late 2019 during my last year as a postdoc at Stockholm Resilience Centre on the ERA project, with preliminary results first presented at EGU2020, so I’m really pleased to finally have this out (it’s effectively been my covid project!). It’s also in a way the academic manifestation of my climatetippingpoints.infoscience outreach site, writing for which led me to build up a big database of papers on various climate tipping points which I felt would be useful to bring together in a scientific paper. Along the way I teamed up with Prof. Tim Lenton, who had been planning on such an update of his 2008 paper that kicked off a lot of climate tipping points research, along with various colleagues from Stockholm Resilience Centre and the Earth Commission (who helped fund the latter stages).
Talking about the paper at the Exeter Tipping Points conference
The paper also tied in with the “Tipping Points: from climate crisis to positive transformation” conference in Exeter in mid-September that I was on the programme committee for. We had over 200 delegates attend in-person from across academia, business, policymaking, and social movements (with more online and at the public debate), and had a lot of great insights on topics ranging from the risks from climate tipping points and socio-ecological cascades through to the possibility of triggering ‘positive’ socio-economic tipping points to accelerate decarbonisation. Outputs will be online soon and form the basis of a follow-up working paper and a new annual pre-COP ‘State of Tipping Points’ report.
So it’s been a busy few weeks on climate tipping points, capping off a few years of science synthesis and outreach. Hopefully this paper will serve as a useful reference point, and help show where some of the gaps are that bigger follow-up projects and assessments can tackle.
I’ve got a new paper out at EGU’s Earth System Dynamics this week, looking at the impact of climate change on the biological pump and ocean carbon sink, and in particular the role of ecological complexity in Earth system models in resolving non-linear climate-biosphere feedbacks. This is the first paper out of my recently-completed postdoc at Stockholm Resilience Centre on climate-biosphere feedbacks and tipping points, with a couple more to be submitted soon.
Following up on yesterday’s twitter thread explainer, here’s a blog version explaining what we did and why:
Pump down the Carbon
The oceans act as a massive carbon sink, taking up around a quarter of human CO₂ emissions so far. This CO₂ dissolves in to the surface ocean (making it more acidic in the process) before being transported to the deep ocean where it stays for hundreds of years (the “solubility pump”). Some of this dissolved CO₂ is used by photosynthesising plankton in the surface to make organic matter, which when they poo or die (or are eaten by zooplankton who then do likewise) produces “particulate organic carbon” (POC) which sinks through the ocean as “marine snow”.
As POC sinks it’s mostly consumed by microbes, who respire the organic matter and re-release the carbon & nutrients in dissolved form (known as “remineralisation”). The overall effect is transporting carbon & nutrients from surface to deep waters, i.e. the “biological pump”. Together the solubility and biological pumps transport carbon from the surface to deep ocean, allowing more CO₂ to dissolve in the surface and storing exported carbon in deep waters for hundreds of years before it is eventually mixed back to the surface and re-released.
Rising atmospheric CO₂ means more carbon is now dissolving in surface waters and being exported to deep waters, and so the ocean is acting as a net carbon sink (at least for a few hundred years before that deep water mixes back up).
Schematic illustrating the impact of warming on the soft tissue biological pump. On the left-side, under cooler preindustrial conditions the surface layer remains fairly well mixed with the deep ocean (large green arrow from deep to surface layers), returning dissolved nutrients and carbon (DNut & DIC) from the remineralisation of exported POC (red arrow from POC to DIC & DNut), while some POC is remineralised partly within the surface layer. On the right-side, warming leads to a shift to dominance by smaller plankton as well as stratification leading to less mixing between the shallow and deep ocean, while the average remineralisation depth getting shallower leads to greater recycling of nutrients and carbon close to the surface layer, combining to result in an overall reduction in POC export.
But the ocean is also warming up, and this changes the strength of the two pumps. Warmer water holds less dissolved CO₂, limiting the solubility pump. Warming also makes it harder for surface waters to mix with colder deep waters, causing the ocean to stratify and less nutrients to be returned to the surface – conditions that favour smaller phytoplankton. Warming speeds up metabolic rates too, and as respiration increases faster than photosynthesis this means that sinking POC is remineralised – and the carbon and nutrients it contains released – closer to the surface, increasing nutrient recycling but also CO₂ in the surface ocean.
Overall this means we expect both the solubility and biological pumps to weaken with climate change, gradually reducing the capacity of the current ocean carbon sink and the negative climate feedback it provides. However, due to computational limits most Earth system models used to project the future ocean carbon sink don’t resolve key relevant ecological processes such as the effect of warming on remineralisation, plankton size shifts, or plankton adapting to lower nutrient availability.
Ask the eco-Genie
In this study we use ecoGEnIE, a recently developed version of a simpler Earth system model featuring both remineralisation that increases with temperature (“temperature-dependent remineralisation”) and multiple sizes of plankton that can use nutrients flexibly depending on availability (“trait-based ecology”). This allows the effects of ecological dynamics on the biological pump and ocean carbon sink in response to climate change to emerge.
We separate out these effects by turning on temperature-dependent remineralisation (TDR) and trait-based ecology (ECO) (instead of the default simpler FPR & BIO settings respectively) both separately and together, and running ecoGEnIE with future emission scenarios (based on the IPCC’s RCP scenarios, from low [RCP2.6], moderate [RCP4.5], high [RCP6.0], to very high [RCP8.5] emissions) until the year 2500.
Graph showing ecoGEnIE simulation results for global POC export flux under different configurations and forcing scenarios. As time goes from left to right, going above the zero line means more POC is sinking from the surface ocean around the world, while going below the zero line means less POC is sinking from the surface ocean. Adding TDR (blue) leads to more sinking POC with warming than default (black), while adding ECO (yellow) leads to less sinking POC with warming (and adding both [pink] gives a smaller decline in sinking POC than default).
We find that turning on just temperature-dependent remineralisation (TDR) increases cumulative POC export relative to default runs (+∼1.3 %) as a result of increased nutrient recycling from remineralisation occurring closer to the surface with warming, whereas turning on just trait-based ecology (ECO) decreases cumulative POC export (−∼0.9 %) by enabling a shift to smaller plankton which produce less sinking POC.
EcoGEnIE POC export maps for default calibration model runs, showing baseline export patterns (left) and the change in POC export by 2100 relative to the 1765 pre-industrial baseline as a result of RCP4.5 (right). Darker colours on the left indicate areas where more POC sinks from the surface ocean (i.e. a stronger biological pump). On the right, blue areas show where sinking POC decreases with warming, while red areas show where it increases. In general, adding TDR means a smaller decline in sinking POC in non-polar oceans, while adding ECO means a greater decline.
In contrast, interactions with complex surface carbonate chemistry and ocean acidification cause opposite responses for the ocean carbon sink in both cases: activating temperature-dependent remineralisation (TDR) leads to a smaller sink relative to default runs (−∼1.0 %), whereas activating trait-based ecology (ECO) leads to a larger relative sink (+∼0.2 %).
Graphs showing ecoGEnIE simulation results for the absolute cumulative ocean carbon sink and the cumulative ocean carbon sink relative to BIO+FPR under different configurations and forcing scenarios.The bottom plot better shows the differences between the configurations – from the left-to-right, going above the zero-line (which represents the default model without the new features) means the ocean carbon sink is bigger in the new model configuration than the default configuration, while going below the zero-line means it’s smaller than the default configuration. In general adding ECO (yellow) leads to a bigger ocean carbon sink with warming, while adding TDR (blue) or combining ECO & TDR (pink) leads to a smaller sink.with warming
Down the sink
Combining both temperature-dependent remineralisation (TDR) and trait-based ecology (ECO) results in an overall strengthening of POC export (+∼0.1 %) and an overall reduction in the ocean carbon sink (−∼0.7 %) relative to default runs. Around 6 gigatonnes less carbon is taken up by the ocean in the 21st century as a result – a bit under 1 year of current human emissions.
This isn’t a huge difference, but is still more than current Earth system models project. There are also other important ecological processes not yet in the model (e.g. separated plankton shell types, ballasting, low resolution) that future work will need to look at to refine these estimates.
These results illustrate though the degree to which ecological dynamics & biodiversity modulate biological pump strength, and indicate that incorporating ecological complexity in Earth system models allows them to more fully resolve non-linear climate–biosphere feedbacks.
With thanks to co-authors Sarah Cornell, Katherine Richardson, and Johan Rockström, and the ERC-funded Earth Resilience in the Anthropocene (ERA) project for supporting this work during my postdoc at SRC!
Much like buses, after a waiting a while for new papers to be published two have come along in short succession. This time though we’re back in the palaeoclimate domain, with a paper based on my work on a ReCoVER-funded Early Career Research award hosted at Ocean & Earth Science at Southampton which applied ‘early warning signal’ methodology to Cenozoic palaeoclimate records. It’s now available open access from Climates of the Past, and as with other papers I’ll summarise it here on my blog as well.
My first EGU journals paper , and a pleasant public review process!
The setting of this paper is the Palaeocene-Eocene Thermal Maximum (i.e. the PETM), which is a natural case of carbon cycle disruption and linked rapid global warming that happened about 56 million years (My) ago. The triggers of this event are still being investigated, but palaeorecords point to the release of several thousand gigatonnes of carbon being released over a few thousand years driving ~5oC of global warming. As a comparison to today, this is a similar amount of carbon as humans are likely to emit from fossil fuel burning but over ~10 times the time, making it a partial but limited analogue to current climate change. The PETM was then followed by several smaller ‘hyperthermal’ events on a regular timescale into the warm Eocene.
As with many other big ancient climate shifts, the PETM was preceded by more gradual changes before a rapid shift, which has led many to hypothesise that it involved some sort of ‘tipping point’ (i.e. when gradual changes can eventually lead to a sudden shift in a system after reaching a critical threshold – see climatetippingpoints.info for more info!) that led to lots of carbon from parts of the Earth system like methane hydrates or peat being suddenly released. Alternatively, the PETM also coincided with a time of mass volcanism associated with the opening of the North Atlantic (of which Iceland is now the distant hangover of), and so could have been directly triggered by volcanic eruptions without any sort of tipping point involved.
Theory suggests that tipping points are often preceded by small but detectable ‘early warning signals’ (EWS), which can be found using statistical analysis of data. After an early proliferation of EWS techniques a few years ago though researchers have found them to have important limitations, with data quality being a big constraint and a propensity for false or missed alarms. Despite this, using multiple EWS indicators of different types along with strong statistical significance testing can still give us a pretty good idea of changes in a system’s overall resilience, with increasing variability and system ‘memory’ indicating the weakening of the system’s stabilising negative feedbacks and therefore a greater risk of being disturbed.
In our study we put this to the test by analysing some good quality long palaeorecords covering 5 My before the PETM and ~2 My after in order to look for any significant changes in carbon-climate system resilience that might help explain the origins of the PETM. We found consistent evidence from several different methods of a gradual destabilisation of the geological carbon cycle in the ~2 My before the PETM, and long-lasting carbon-climate system instability in the aftermath. This period coincides with the North Atlantic volcanism, leading us to suggest that these eruptions helped to gradually destabilise the carbon cycle by suppressing organic carbon burial (in particular either the marine biological pump or peat on land) as the result of volcanism-driven warming .
However, although this could mean the PETM itself was a tipping point resulting from this destabilisation it cannot solidly prove it, and we find no evidence of a tipping point in just the climate system either. Despite this, a decline in carbon cycle resilience would’ve still made it easier for the PETM to occur and last longer than it would’ve been otherwise, as weaker negative feedbacks would slow down the carbon cycle’s recovery to pre-PETM conditions. We also find evidence that the subsequent hyperthermal was preceded by slightly different dynamics than the PETM itself, which fits with the hypothesis that the PETM required an extra “push” from say volcanism but that the later events were more traditional tipping points.
To find out more, the full article is open access and free to read for all, and direct questions are welcome. Future follow-up work include a similar analysis of the Cretaceous/Palaeogene boundary and the Deccan Traps (paper TBC), and other Cenozoic climate shifts as more long and high-resolution records become available. Thanks also go to EPSRC/ReCoVER for funding the initial project, OES at Uni. Southampton for hosting the project back in Summer 2016, SRC where I did the final revisions/reanalyses, and Stockholm University for funding the open access publication.
Things continue to keep rapidly changing this year, and I’ve started on another new academic project!
Back in May I started a new Post-Doc Research Fellowship in the Global Environmental Change and Earth Observation group in the Geography and Environment dept. of the University of Southampton, working on the ReCoVER Network-funded pilot study project “Agent-based models for the analysis of early warning signals of ecosystem tipping points” with PI James G. Dyke. In this project we’re working on some new potential early warning signals for ecosystems near tipping points – in particular looking at the ecosystems’ compositional disorder and food web dynamics and replicating these using Agent Based Models (ABMs) – using lake eutrophication as a case study. We’re hoping this 6 month pilot study will lead to some new useful metrics for detecting potential tipping points in ecosystems (and socio-ecological systems) developed through a bigger project in future. Thanks again to the ReCoVER Network for funding this project! This means I’ll still be In Southampton for the rest of 2017, but beyond that who knows…
In other news, I’ll be giving a Winchester Café Scientifique talk on Monday 4th September about Climate Tipping Points (linked to my http://www.climatetippingpoints.info outreach project) – I’ll be talking about what climate tipping points are, how they might affect us, and whether we can predict them, as well as considering how they make climate change more of a “wicked problem” to deal with. Come along if you’re around!
I’m pleased to announce that I’ve just started a new Post-Doc today at the University of Southampton, funded by the EPSRC/ReCoVER Network’s Early Career Researcher fund. I’ll be working for the next few months as a Research Fellow at Ocean and Earth Sciences in the National Oceanography Centre on a project entitled “Can early warning signals be reliably detected in the Cenozoic palaeoclimate record?” along with Co-Is Toby Tyrrell, James Dyke, and Tim Lenton. This will continue with research on the same topic that I started during my PhD, with the aim of extending the data and techniques used and write up some papers.
Some background: there are many points in Earth’s history where the Earth System is hypothesised to pass a ‘tipping point’ beyond which a rapid transition to a new and very different state occurs. These critical transitions are common in other complex dynamical systems and are often preceded in datasets by ‘early warning signals’ (EWS) such as critical slowing down (i.e. the system’s recovery time in response to perturbations slows down) and increasing variability (as the data gradually contains more extreme values). Dakos et al. [2008] and subsequent studies found that EWS can be detected prior to several past climate shifts, suggesting that critical transitions can successfully be detected in the palaeorecord and that palaeo tipping points can be identified. However, doubts have been raised about the reliability of EWS analysis on palaeoclimate records, the degree to which parameter selection can affect the results, and the risk of committing the ‘prosecutor’s fallacy’ when analysing suspected critical transitions. In my PhD I did a pilot study in which I analysed the highest-resolution palaeorecords currently available across a number of perturbations to the Cenozoic carbon-climate system, and found some promising results even when using a cautious approach to counter potential problems. In this Post-Doc I’ll focus on these most promising events with additional analytical techniques and data and publish the results in due course.
I’d like to thank the ReCoVER network and EPSRC for funding this research, and I look forward to sharing the results here in future!