New paper out on climate tipping points

We had a new paper out a month ago in Science, in which we reassess climate tipping points based on the past ~15 years of climate science. We conclude that five climate tipping points could already be possible at current warming levels, four of which becoming likely beyond 1.5°C. You can find a free referral link to the final published version over on my publications page (plus links to the accepted version and preprint), and a blogpost explaining the paper over at

Summary figure for the paper, showing the climate tipping elements we identify and what global warming level they might tip at

This paper first started out in late 2019 during my last year as a postdoc at Stockholm Resilience Centre on the ERA project, with preliminary results first presented at EGU2020, so I’m really pleased to finally have this out (it’s effectively been my covid project!). It’s also in a way the academic manifestation of my science outreach site, writing for which led me to build up a big database of papers on various climate tipping points which I felt would be useful to bring together in a scientific paper. Along the way I teamed up with Prof. Tim Lenton, who had been planning on such an update of his 2008 paper that kicked off a lot of climate tipping points research, along with various colleagues from Stockholm Resilience Centre and the Earth Commission (who helped fund the latter stages).

We’ve had a lot of media coverage of the paper, despite an unexpectedly busy media landscape (the news about the queen broke just minutes before our press embargo lifted…). I was interviewed about the paper by Carbon Brief, The Guardian, New Scientist, New York Times, BBC World Service, Euronews, various Swedish outlets (Dagens Nyheter, Sveriges Radio, SVT Nyheter, TV4), and upcoming podcasts (Radio Ecoshock, Living on Earth, Voice of America). I also wrote an explainer blogpost as well as a piece at The Conversation highlighting the study’s nuances on how close we may be to reaching tipping points that some media coverage missed.

Talking about the paper at the Exeter Tipping Points conference

The paper also tied in with the “Tipping Points: from climate crisis to positive transformation” conference in Exeter in mid-September that I was on the programme committee for. We had over 200 delegates attend in-person from across academia, business, policymaking, and social movements (with more online and at the public debate), and had a lot of great insights on topics ranging from the risks from climate tipping points and socio-ecological cascades through to the possibility of triggering ‘positive’ socio-economic tipping points to accelerate decarbonisation. Outputs will be online soon and form the basis of a follow-up working paper and a new annual pre-COP ‘State of Tipping Points’ report.

So it’s been a busy few weeks on climate tipping points, capping off a few years of science synthesis and outreach. Hopefully this paper will serve as a useful reference point, and help show where some of the gaps are that bigger follow-up projects and assessments can tackle.

New Paper Out: Reduced Carbon Cycle Resilience across the PETM

Much like buses, after a waiting a while for new papers to be published two have come along in short succession. This time though we’re back in the palaeoclimate domain, with a paper based on my work on a ReCoVER-funded Early Career Research award hosted at Ocean & Earth Science at Southampton which applied ‘early warning signal’ methodology to Cenozoic palaeoclimate records. It’s now available open access from Climates of the Past, and as with other papers I’ll summarise it here on my blog as well.

CP cover enlarged
My first EGU journals paper , and a pleasant public review process!

The setting of this paper is the Palaeocene-Eocene Thermal Maximum (i.e. the PETM), which is a natural case of carbon cycle disruption and linked rapid global warming that happened about 56 million years (My) ago. The triggers of this event are still being investigated, but palaeorecords point to the release of several thousand gigatonnes of carbon being released over a few thousand years driving ~5oC of global warming. As a comparison to today, this is a similar amount of carbon as humans are likely to emit from fossil fuel burning but over ~10 times the time, making it a partial but limited analogue to current climate change. The PETM was then followed by several smaller ‘hyperthermal’ events on a regular timescale into the warm Eocene.

As with many other big ancient climate shifts, the PETM was preceded by more gradual changes before a rapid shift, which has led many to hypothesise that it involved some sort of ‘tipping point’ (i.e. when gradual changes can eventually lead to a sudden shift in a system after reaching a critical threshold – see for more info!) that led to lots of carbon from parts of the Earth system like methane hydrates or peat being suddenly released. Alternatively, the PETM also coincided with a time of mass volcanism associated with the opening of the North Atlantic (of which Iceland is now the distant hangover of), and so could have been directly triggered by volcanic eruptions without any sort of tipping point involved.

Theory suggests that tipping points are often preceded by small but detectable ‘early warning signals’ (EWS), which can be found using statistical analysis of data. After an early proliferation of EWS techniques a few years ago though researchers have found them to have important limitations, with data quality being a big constraint and a propensity for false or missed alarms. Despite this, using multiple EWS indicators of different types along with strong statistical significance testing can still give us a pretty good idea of changes in a system’s overall resilience, with increasing variability and system ‘memory’ indicating the weakening of the system’s stabilising negative feedbacks and therefore a greater risk of being disturbed.

In our study we put this to the test by analysing some good quality long palaeorecords covering 5 My before the PETM and ~2 My after in order to look for any significant changes in carbon-climate system resilience that might help explain the origins of the PETM. We found consistent evidence from several different methods of a gradual destabilisation of the geological carbon cycle in the ~2 My before the PETM, and long-lasting carbon-climate system instability in the aftermath. This period coincides with the North Atlantic volcanism, leading us to suggest that these eruptions helped to gradually destabilise the carbon cycle by suppressing organic carbon burial (in particular either the marine biological pump or peat on land) as the result of volcanism-driven warming .

However, although this could mean the PETM itself was a tipping point resulting from this destabilisation it cannot solidly prove it, and we find no evidence of a tipping point in just the climate system either. Despite this, a decline in carbon cycle resilience would’ve still made it easier for the PETM to occur and last longer than it would’ve been otherwise, as weaker negative feedbacks would slow down the carbon cycle’s recovery to pre-PETM conditions. We also find evidence that the subsequent hyperthermal was preceded by slightly different dynamics than the PETM itself, which fits with the hypothesis that the PETM required an extra “push” from say volcanism but that the later events were more traditional tipping points.

To find out more, the full article is open access and free to read for all, and direct questions are welcome. Future follow-up work include a similar analysis of the Cretaceous/Palaeogene boundary and the Deccan Traps (paper TBC), and other Cenozoic climate shifts as more long and high-resolution records become available. Thanks also go to EPSRC/ReCoVER for funding the initial project, OES at Uni. Southampton for hosting the project back in Summer 2016, SRC where I did the final revisions/reanalyses, and Stockholm University for funding the open access publication.

NEWS: New Post-Doc on Palaeo Early Warning Signals (funded by ReCoVER)

I’m pleased to announce that I’ve just started a new Post-Doc today at the University of Southampton, funded by the EPSRC/ReCoVER Network’s Early Career Researcher fund. I’ll be working for the next few months as a Research Fellow at Ocean and Earth Sciences in the National Oceanography Centre on a project entitled “Can early warning signals be reliably detected in the Cenozoic palaeoclimate record?” along with Co-Is Toby Tyrrell, James Dyke, and Tim Lenton. This will continue with research on the same topic that I started during my PhD, with the aim of extending the data and techniques used and write up some papers.

Some background: there are many points in Earth’s history where the Earth System is hypothesised to pass a ‘tipping point’ beyond which a rapid transition to a new and very different state occurs. These critical transitions are common in other complex dynamical systems and are often preceded in datasets by ‘early warning signals’ (EWS) such as critical slowing down (i.e. the system’s recovery time in response to perturbations slows down) and increasing variability (as the data gradually contains more extreme values). Dakos et al. [2008] and subsequent studies found that EWS can be detected prior to several past climate shifts, suggesting that critical transitions can successfully be detected in the palaeorecord and that palaeo tipping points can be identified. However, doubts have been raised about the reliability of EWS analysis on palaeoclimate records, the degree to which parameter selection can affect the results, and the risk of committing the ‘prosecutor’s fallacy’ when analysing suspected critical transitions. In my PhD I did a pilot study in which I analysed the highest-resolution palaeorecords currently available across a number of perturbations to the Cenozoic carbon-climate system, and found some promising results even when using a cautious approach to counter potential problems. In this Post-Doc I’ll focus on these most promising events with additional analytical techniques and data and publish the results in due course.

I’d like to thank the ReCoVER network and EPSRC for funding this research, and I look forward to sharing the results here in future!